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ABSTRACT

In this report, commonly used lossless and lossy image

compression algorithms are heuristically presented and then

compared in terms of performance. The lossy algorithms, JPEG

(Joint Photographic Experts Group) and Fractal compression,

are compared in terms of their respective sensitivities

between compression ratio and image fidelity. Compression

algorithms based on the lossless models of Huffman, Adaptive

Huffman, and Arithmetic coding are compared in terms of

compression ratio and compression/decompression time require-

ments. High fidelity image reconstructions of JPEG and

Fractal compressions are also included in the comparison.

Results, for the images tested, indicate that if imperceptible

losses in fidelity can be tolerated, then among the current

versions of the algorithms tested, the JPEG results in higher

compression with less process time. .

--iii. ...
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I. INTRODUCTION

A. REVIEW OF LITERATURE

The explosive proliferation of information in recent years

has created a significant demand for the efficient storage,

access, and transmission of this data. This is especially

true for digital images, as an extremely large number of bits

is required in order to represent even a modestly sized single

image with acceptable quality and resolution. Image compres-

sion, which has come into existence only within the last ten

years, is the area of image processing that deals with this

problem (Jain, 1981), (Nelson, 1992), (Rabbani, 1991) . Its

goal is to reduce the number of bits used to store or transmit

the image, yet retain an acceptable quality for the end user.

A variety of image compression techniques have been

developed over the years. They have been based on lossless

and lossy properties. The methods making use of lossless

properties generate an exact duplicate of the original image

upon decompression. Lossy methods, on the other hand,

relinquish some accuracy in exchange for increased compres-

sion. The efficiency of each of these compression algorithms

is measured by its compressing ability, distortion or fidelity

between the original and final decompressed image, and
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computational complexity, which has a direct relation to time

requirements for implementation (Jain, 1981, p. 349).

Some of the lossless algorithms that have been developed

are the Huffman and Adaptive Huffman (Knuth, 1985), (Nelson,

1992), (Rabbani, 1991), Arithmetic (Langdon, 1984), (Nelson,

1992), (Rissanen, 1979), (Witten, 1987), and the Ziv and

Lempel (LZ78) models (Jackson, 1993), (Nelson, 1992). With

the applications for image processing growing dramatically

(for instance in satellite imaging, computer graphics in

advertising and entertainment, and model simulation in science

and engineering), lossy compression techniques have received

the most attention in recent years. One widely accepted

standard is the Joint Photographic Experts Group - Discrete

Cosine Transform (JPEG-DCT) (Ahmed, 1974), (Ahmed, 1975),

(Nelson, 1992), (Wallace, 1992). Additionally, a relatively

new method being explored takes advantage of the fractal

character for compression of an image. It makes use of

iterative techniques to exploit the redundancy in images

(Barnsley, 1993), (Fisher, 1992), (Jacobs, 1992), (NOSC

TR1315), (NOSC TR1362), (NOSC TR1408).

B. OVERVIEW OF THE THESIS

The current chapter introduces the area of image process-

ing known as image compression. The various methods of image

2



compression and the basis for determining the efficiency of

each are presented.

Chapter II discusses the models of three accepted lossless

compression techniques whose efficiencies will be examined.

Those models discussed for future comparison are the Huffman,

Adaptive Huffman, and Arithmetic algorithms.

Chapter III describes the methods of the two lossy

compression techniques that will be analyzed in this research.

The lossy routine models presented are the widely utilized

JPEG-DCT and the relatively new Fractal-based algorithm.

In Chapter IV, a comparative analysis of the different

efficiencies of each of the presented image compression

techniques is performed. The advantages and disadvantages of

each of the examined methods are discussed.

The general conclusions reached from the comparative

analysis of Chapter IV are presented in Chapter V.

Appendix A covers the operational mechanics which were

required to gather data for comparison of the different image

compression techniques. Topics discussed include image

format, conversion between image formats, display of images,

and PC versus Sun Workstation operations. Appendix B lists

some public domain Fractal Compression Code and Appendix C

contains the numerical data gathered during the research.
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II. LOSSLESS COMPRESSION TECHNIQUES

A. THE HUFFMAN ALGORITHM

The basic premise of Huffman coding is the creation of

variable-length codes for each symbol, with each code being

represented by an integral number of bits. Symbols with

higher probabilities are assigned shorter bit codes while

symbols with lower probabilities are assigned longer nit

codes. Once the frequency or probability for every symbol in

a source is determined, the Huffman code can be constructed by

repeatedly combining the two least probable symbols at each

ztage until the original source is reduced to only two

symbols. These two symbols are respectively assigned the bit

values of '0' and '1' . The codes for the previous reduced

stage are then determined by appending a '0' or 'I' to the

right of the code corresponding to the two least probable

symbols. The process is repeated until each symbol in the

original source is assigned a code, thus obtaining the Huffman

code. Table II.1 shows an example source reduction and Table

11.2 performs the resulting codeword construction for generat-

ing the Huffman code. Looking at Table 11.2, it can be seen

that the final codes have the unique prefix property, meaning

no single code is a prefix for another code. Therefore, they

can be unambiguously decoded as they arrive in a continuous
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TABLE II.1: EXAMPLE SOURCE REDUCTION PROCESS FOR HUFFMAN
CODING.

Original Reduced Reduced Reduced
Source Source Source Source

s, Count Prob

s, 20 0.40 s, 0.40 s, 0.40 s,345  0.60

s, 10 0.20 s. 0.20 S345 0.40 s, 0.40

S3 10 0.20 S3 0.20 s2 0.20

s 4  6 0.12 S45 0.20

ss 4 0.08

TABLE 11.2: EXAMPLE SOURCE CODEWORD CONSTRUCTION PROCESS FOR
HUFFMAN CODING.

Original Reduced Reduced Reduced
Source Source Source Source

s, Codeword

s 1 s1 1 s1 S234S 0

S 2  000 s2 01 s345 00 S, 1

S 3  001 S3 000 S2 01

S4 010 S45 001

s 011O

stream. Additionally, the symbol with the highest prob-

ability, s,, has been assigned the fewest bits while the

symbol with the lowest probability, s5, has been assigned the

greatest bits. It should be nioted that symbols of equal

weight can be interchanged to make an equally optimal Huffman

code.

5



Each of the above observations contribute tr make Huffman

coding fairly simple to implement.

One of the limitations of Huffman coding is that since the

number of bits for each code must be an integer, the ideal

code length for a symbol is met only when its probability is

a negative power of two, i.e., 1/2, 1/4, 1/8, etc. This is

because the ideal binary code length for a symbol s, is

l(s)=-log2 (p 1), where p, is the probability of s,. Tberefore,

the chance of the Huffman code being set to ideal lengths is

not very likely. The example in Tables II.1 and 11.2 accom-

plishes compression by reducing the average symbol length

(Lavg) from 3.0 to 2.0.

n

P p,

where n is the number of symbols. The original L,,g is 3.0

because three binary bits are needed to differentiate between

five symbols. Another limitation is that a copy of the

probability table must be transmitted with the compcessed data

since the expansion program would otherwise not be able to

decode it correctly. A preset Huffman code could be used to

avoid this limitation, but then the model is not very adapt-

able to changing source statistics. In fact, there is even

the possibility of expansion if the preset code is used with

changing sources (Rabbani, 1991, pp. 27-28).
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B. ADAPTIVE HUFFMAN ALGORITHM

In the H,- nan model discussed above, the probability of

each of the symbols was determined without any consideration

of the symbols that preceded it. This is known as a zero

order model. By a:ccounc~ing for predictability, or increasing

the model order, one may further reduce the number of bits

required for the data. The trade-off though, is that the

number of probability tables that must be transmitted with it

will also increase. In essence, the savings in image data are

negated by the requirement for additiona~l probahility tables.

Adapti-ve Huffman coding allows for the use of higher order

modeling without the requirement of the added probability

tables. This is accomplished by adjusting the Huffman codes

progressively, based only on previous data. Instead of first

determining probabilities ardi then encoding as in the Huffman

procedure, the Adaptive model initially assumes all symbol

weights are zero and counts the symbol frequencies as it

encodes them. After each symbol, the Huffman code is mnodified

to account for the new character. The decoding pr~ces3

similarly learns the symbol frequencies and modifies the

Huffman code in the same fashion. Thus, the encoder and

decoder remain synchronized because any changes to symbol

probabilities in the encoder are also taking place in the

decoder. The only requirement is that both sender and

recei-.ver know the size of the symbol domain, which is the



number of different symbol possibilities (Knuth, 1985, pp.

163-164).

C. ARITHMETIC ALGORITHM

Even though variations of Huffman coding are currently

accepted to be the most efficient fixed-length lossless coding

methods, they still have one major disadvantage. This is the

requirement that symbol codes be an integral number of bits.

As stated earlier, this only occurs for probabilities of 1/2,

1/4, 1/8, etc. If the probability of a symbol is 1/5, the

optimum code length would be -iog 2 (0.2) = 2.32 bits. Huffman

code would require two or three bits to encode the symbol,

thus preventing maximum compression.

A viable solution to this problem is Arithmetic coding,

which is another lossless technique that represents the entire

message as a number stream. The idea is to represent the

entire symbol domain as the interval of real numbers between

zero inclusive and one exclusive ([0, 1)). Each symbol, based

on its probability, is assigned a range within the interval.

Table 11.3 demonstrates a sample interval range assignment.

Before encoding is initiated, the range is [0, 1) . As

each symbol is processed, the range is narrowed to that

interval within the current range which is allocated to the

symbol. As successive symbols are processed, the interval

becomes smaller and smaller. The higher the probability of a

8



TABLE 11.3: EXAMPLE ARITHMETIC CODING RANGE ASSIGNMENT.

Symbol Probability Range

A 0.40 [0.00, 0.40)

B 0.25 [0.40, 0.65)

C 0.15 [0.65, 0.80)

D 0.10 [0.80, 0.90)

E 0.10 [0.90, 1.00)

symbol, the less it will reduce the range and therefore, add

fewer bits to the code. Table 11.4 shows the process based on

the symbol probabilities listed in Table 11.3.

TABLE II.4: ARITHMETIC ENCODING PROCESS.

Symbol Symbol Low Value High Value
Number I

1 B 0.40 0.65

2 A 0.40 0.50

3 D 0.48 0.49

4 A 0.480 0.484

5 C 0.4826 0.4832

6 E 0.48314 0.48320

The decoding process is then fairly straightforward. The

first symbol is determined from the subinterval of [0,I) in

which the encoded message falls. The next symbol is discov-

ered by subtracting the low value of the first symbol with the

encoded value and dividing by the width of the range. The
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symbol is then found via the interval in which the new encoded

value falls. The decoding algorithm for the message "BADACE"

is illustrated in Table 11.5.

TABLE 11.5: ARITHMETIC DECODING PROCESS.

[Encoded Number I Symbol I Low High I Range

0.48314 B 0.40 0.65 0.25

0.33256 A 0.00 0.40 0.40

0.8314 D 0.80 0.90 0.10

0.314 A 0.00 0.40 0.40

0.785 C 0.65 0.80 0.15

0.90 E 0.90 1.00 0.10

It should be noted that in actual coding, the values of

the encoded numbers will be represented in binary. See

Langdon (1984, pp. 136-139) for an example utilizing binary

values. Decimal values were utilized in the above example to

assist the reader in understanding the concept (Nelson, 1992,

p. 128). Since the decoder interprets the encoded number 0.0

as a symbol (A in Table 11.3) in the domain interval, an end

of message symbol known to both the encoder and decoder is re-

quired (Witten, 1987, p. 522).

An example by Nelson (1992, p. 133) provides insight into

how compression is obtained in Arithmetic coding. Assume a

stream 'AAAAAAA' is to be compressed. The probability of A is

known to be 0.9 while the end-of-message character has a

10



probability of 0.1. The ranges [0, 0.9) and [0.9, 1.0) are

assigned to the A and end-of-message characters respectively.

Table 11.6 shows the results.

TABLE 11.6: SAMPLE ARITHMETIC ENCODING TO SHOW COMPRES-
SION.

New Character Low Value High Value

A 0.0 0.9

A 0.0 0.81

A 0.0 0.729

A 0.0 0.6561

A 0.0 0.59049

A 0.0 0.531441

A 0.0 0.4782969

END 0.43046721 0.4782969

One dilemma of Arithmetic coding is that most -mputers

cannot process numbers of the length needed to encooe an

image. This is corrected by using an incremental transition

scheme which links the high and low end bits of successive

numbers in the symbol stream. Another problem is that of loss

of precision between the high and low values as the range gets

very small. This can result in the low value being higher

than the high value and consequently, causing underf low. This

is eliminated by inserting checks in the process and so

increased compression is achieved at the expense of increased

complexity.

11



Arithmetic coding has shown the most promise in compres-

sion of black and white or two value, one bit per pixel images

(Langdon, 1984, pp. 140-142) , (Langdon, 1981, pp. 863-866).

Huffman coding as performed in Chapter II.A is unable to

compress these images due to the integral coding requirement.

Lossy techniques have also proven unrealistic because a loss

of quality in decompression can result in the opposite color

being output, which could drastically degrade the final image

due to there being only two colors.

12



III. LOSSY COMPRESSION TECHNIQUES

A. JPEG-DCT ALGORITHM

With the ongoing advances in digital image technology, it

was realized quite some time back that the previously men-

tioned lossless compression techniques were not going to be

satisfactory due to the enormous amounts of data required to

display a digital image. For example, a digitized, single

image at color television quality requires upwards of one

million bytes or 8 million bits of data storage. Therefore,

in 1989, the ISO and CCITT (International Standards Organiza-

tion/Consultive Committee for International Telephone and

t melegraph) joined together to form the JPEG committee to set

an image compression standard (Wallace, 1992, p. xix). Though

the JPEG standard has not yet been officially published, it is

near enough to its final stages so that its applications are

now being widely used in commercial applications.

The JPEG encoder, its r-.del shown in Figure III.1,

achieves compression with the combination of lossy quantiza-

tion followed by entropy encoding. In the most common form of

the JPEG algorithm, the entropy process is carried out by the

Huffman or Arithmetic methods (Wallace, 1992, p. xxiii). The

quantization step allows the user to sacrifice quality in

order to achieve greater compression, For decompression, the

13



JPEG decoder performs the same steps in reverse order, with

one slight alteration - an IDCT (Inverse Discrete Cosine

Transform) replaces the DCT process.

DCT-BASED JPEG ENCODER

8X8 - ENTROPY
blocks • FDCT . QUANTIZER..... ENCODER

L __ i- C
SOURCE -IM A G E . . . . . .' . . . . . . . . . . . . . . . . . .

DATA _ _

TABLE 'TABLE <
SPECIFICATIONSi SPECIFICATIONS! 0213

Figure 11.1: DCT-Based Encoder Processing Steps (Wallace, 1992, p.
xxi).

The first of the four main steps for compression is the

partitioning of the input data into groups of 8x8 pixels in

preparation for the DCT (Discrete Cosine Transform), which is

performed in the second step. The reason for the 8x8 grouping

is that a DCT performed over the entire image would require an

inordinate number of computations, as can be seen by the

following equations:

I ~~N- I A-I (. ~r (y+Qi

DCT(i)= . C(OC) E pelY)cos[ (2x+l)i]Cos[ (2yNlr
2x.oy.o 2N 2N (1.
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I
where: C(i), CU) =I - for ij=O, else C(i), CU) = 1.

In the case of the JPEG, N=8. In the decoding portion, the

IDCT is defined as follows:

I N-1N- (2x+_1i_% (2 + 1)jrIDCT(x,y) 20. C(i)C(f)DC7(iJ)cos[ (2x (1(2Y2)

The justification for choosing 8x8 sized blocks vice 16x16 or

any other size is that research has shown there is very little

predictability between pixels spaced more than eight positions

away (Nelson, 1992, P. 360).

There are two reasons for the general use of the DCT/IDCT

versus the DFT/IDFT (Discrete Fourier Transform/Inverse

Discrete Fourier Transform). See Gonzalez (1987, pp. 65-69)

for a definition and explanation of the DFT/IDFT. The primary

reason is that during reconstruction of the individual blocks,

pixel disparities on opposite sides of the boundaries cause

the DFT to leave edge artifacts at the boundaries. In an

image divided into numerous 8x8 blocks, these boundary

discontinuities would be highly visible and thus, unacceptable

(Rabbani, 1991, pp. 109-110). As it turns out, it can be

shown that an N-point DCT can be represented as the real part

of the 2N-point DFT of a data sequence or pixel sat whose

values at N+1, N+2, ... , 2N are equal to zero (Bracewell,

15



1986, pp. 17-18). This is equivalent to the 2N-point DFT of

a sequence in which the pixel values from points [0, N-i] are

reflected about a vertical axis placed at N and repeated to

form an even periodic data set. Due to the smoothness of the

data set at the boundary, upon reconstruction of the image

there will not be pixel value disparities or edge artifacts at

the exterior points. For the second argument, there is little

sense in taking the DFT and then discarding the imaginary

values while retaining the real values, when the DCT can

perform the same function in one step with half the computa-

tions. Despite this solution, some residual edge artifacts

from the DCT are still known to be generated after quantiza-

tion (Rollins, 1992, pp. 191-199).

Upon completing the DCT transformation, the data must then

be quantized. Quantization is vital to obtain compression

because the DCT is a lossless transformation that does not

actually compress the image data. Instead, it concentrates the

majority of the information into a few coefficients in the

upper left-hand corner of the data block, the importance of

which will be explained later.

Quantization achieves the majority of the compression by

modifying the DCT transformed coefficients into values

requiring fewer bits to represent. It is accomplished by

dividing each DCT coefficient by the corresponding quantizing

value and rounding to the nearest integer.

16



Quantized Value =INTEGER{ D CT(i J) (111.3)
Q(ij•

Like the data processed by the DCT, the quantization table is

an 8x8 block, but it is specified by the user, who makes a

choice based on the desired final image quality. It is

effective because it forces many of the DCT coefficients to

truncate to zero. These zero coefficients are not overly

important to the reconstructed image quality because after the

DCT transformation, as stated earlier, most of the useful

information is concentrated in the upper left-hand corner (0,0

position) of the DCT block. This coefficient is an average

value of the overall magnitude of the input data and is called

the DC coefficient.

Prior to the final step, the quantized values are arranged

in a zig-zag sequence (see Figure 111.2) to organize the data

so that the zero values are placed in a more efficient

.//

Figure M.2: Zig-zag sequencing
which is performed after quantiza-
tion.
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consecutive ordering. With the zero values arranged in this

continuous fashion, it is possible to achieve further compres-

sion by using a lossless technique such as Huffman or Arithme-

tic coding (Wallace, 1992, p. xxiii) . In Nelson's (1992)

simplified version of the JPEG algorithm, the scheme utilizes

runlength encoding in place of the more standard choices

mentioned above.

Some steps of the JPEG compression technique will now be

demonstrated in some examples taken from Nelson (1992, pp.

365-368) . In each case, the image is 8x8 pixels and 256

different grey-scale colors. Figure 111.3 shows a sample

data-bit representation of a non-quantized test image before

and after processing by the DCT algorithm.

The values of the DCT output warrants some discussion.

"Because of the DCT's application importance and its relation-

ship to the DFT, many different algorithms by which the DCT

and IDCT may be approximately computed have been devised."

(Wallace, 1992, p. xxi). Small variations in implementation

or precision may cause different output for the same input.

Additionally, there are varying methods to input and store the

output data. As seen in Figure 111.3, DCT output values can

be negative, and in the case of the DC coefficient, greatly

increased in magnitude. Nelson (1992, pp. 364-365) deals with

this obstacle in the simplest fashion by allowing 11 bits per

value. He assumes they may vary from -1,024 to 1,023. More

18



Input Pixel Values:

140 144 147 140 140 155 179 175

144 152 140 147 140 148 16-/ 179

152 155 136 -67 i63 162 152 1'2
168 145 156 160 152 15; 136 160

162 113 156 148 140 136 147 162

147 It/ 140 155 155 140 136 162

136 156 123 167 162 144 140 147

148 155 136 155 152 147 147 136

Output Pixel Values:

186 -18 15 -9 23 -9 -14 19
21 -34 26 -9 -11 11 14 7

-10 -24 -2 6 -18 3 -20 -1
-8 -5 14 -15 -8 -3 -3 8

-3 10 8 1 -11 18 18 15

4 -2 -18 8 8 -4 L -7

9 1 -3 4 -1 -7 -1 -2
0 -8 -2 2 1 4 -6 0

Figure M11.3: Sample image data before and after process-
ing by the DCT.

memory is required than the original eight-bit values, but the

quantization and entropy compression steps easily offset this

temporary increase. Rabbini (1991, pp. 114-115) uses only

eight bits, but stores the data based on a range and its

difference from previous values. Wallace (1992, p. xx) shifts

the input to the DCT from [0, (2P-l) ] to [-(2P-), ( 2 P-- 1 )], with

p=8 in this instance. Each method has its advantages and

disadvantages based on the complexity of implementation and

storage requirements - variables every user must consider.
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As mentioned before, quantization is a user-selected

variable. In the next example, the quantization table chosen

can be seen in Figure 111.4. The effects of this quantization

block on a sample DCT transformed image can be seen in Figure

111.5. By then reordering into the zig-zag sequence previous-

ly shown in Figure 111.2, further compression of the data can

be accomplished by processing it through a loosless encoder.

3 5 7 9 11 13 15 17
5 7 9 11 13 15 17 19

7 9 11 13 15 17 19 21
9 11 13 15 17 19 21 23

11 13 15 17 19 21 23 25
13 15 17 19 21 23 25 27
15 17 19 21 23 25 27 29
17 19 21 23 25 27 29 31

Figure 1A.4: Selected Quantization Table (Nelson,
1992, p. 367)

B. FRACTAL COMPRESSION

1. Conceptual Background

Another lossy method of compression is based on the

"self-similarities" or "fractals" inherently present in an

image. When magnified, a small portion of an image may

closely reserble a larger portion of the same image. Benoit

Mandelbrot, considered to be the father of fractal theory,

demonstrated that random, computer generated fractals could produce
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DCT Before Quantizacion:

92 3 -9 - 3 -I 3 2

39 -58 12 17 -2 2 4 2

-84 62 1 -18 3 4 -5 5
-52 -36 -10 14 -10 4 -2 0
-86 -40 49 -7 17 -6 -2 5

-62 65 -12 -2 3 -8 -2 0
-17 14 -36 17 -11 J

-54 32 -9 -9 22 0 1 3

DCT After Quantizarion:

90 n -7 0 C' 0 0 0
-35 -56 9 11 0 0 0 0
-84 54 0 -13 0 0 0 0

-45 -33 0 0 0 0 0 0

-77 -39 45 0 0 0 0 0
-52 60 0 0 0 0 0 0

-15 0 -19 0 0 0 0 0
51 19 0 0 0 0 0 0

Figure M11.5: A sample DCT transformed image before and
after quantization (Nelson, i992, p. 368)

realistic representations of clouds, coastlines, trees, etc.

Because computer-generated fractal images have similar
patterns on many different scales, relatively little code
is all that is usually needed to create them. Once
written to produce the detail on one scale, much the same
software can be reused in a loop to repeat the image on
successively larger (or smaller) scales. Thus a remark-
ably intricate image blossoms from a small, simple piece
of software (Zorpette, 1988, p. 29).

In 1988 Barnsley proposed thac if high quality images

could be created from only a few initial parts, then it should

be possible to reverse the process in order to gain c )mparable

compression. With his proposal thcugh, he realized that

applying the reverse technique to real images, as opposed to
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generating selectively redundant pictures, was going to be a

substantially more complex procedure. He has since shown that

recursive iteration x,1,,=W(x•) of an initial image x0 under a

collection W of carefully chosen affine transformations'

converges toward a desired image p, referred to as an "at-

tractor". The technique is known as an Iterated Function

System (IFS). Essentially, Barnsley applied the Contraction

Mapping Theorem to images for the purpose of data compression.

In general the theorem states if a mapping, W, is in fact

"contracting", then iteration of any data set x. under W will

converge to a unique point p that remains fixed, i.e. W(p)=p

(Barnsley, 1993, pp. 70-73). The information represented by

this attractor can be encoded in the coefficients of the

associated affine transformations. Figure 111.6 demonstrates

this principle for two different images. Images III.6(a) and

111.6(b) are reduced by a half and reproduced three times. By

the third iteration of this transformation, both images show

definite convergence to the attracting "fixed point" image in

Figure III.6(c).

2. An Algorithm for Fractal Compression/Decompression

The description to follow is based on fundamental

principles for Fractal compression (Barnsley, 1993), (Fisher,

'The general affine transformation is a linear transformation followed by a translation. For
the purpose of Fractal compression the coefficients of the linear transformation are constant
(Bamsley, 1993, p. 52).
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Figure 111.6: Demonstration of affine transformations
causing an image to converge to an attractor (Fisher, 1992,
p. 2).

1992). A public domain program written in C, which is built

on these principles (Young, 1992), can be found in

Appendix B.

Consider an image of 256x256 pixels with 256 possible

grey-scale levels. The image is first divided up into non-

overlapping blocks of 8x8 pixels called ranges. There are a

total of 1,024 of these ranges. The image is also divided

into individual domains, which comprise all possible 16x16

pixel blocks in the image. This comes to 241 times 241, or

58,081 total domains. For each range, the domains are

searched for a match that bears a likeness to the portion of

the image above that range. During this search, the domain
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square is be flipped and rotated to find the best match.

Since it is the matching of two squares, there are 8 possibil-

ities for each domain: rotations of 0, 90, 270, and 360

degrees and flipping about the vertical, horizontal, and both

diagonal axes. To account for the area of the domain being

four times that of the range, a subsample or average of each

2x2 pixel area is taken for comparison purposes. The point of

this matching is to find the "best" affine transformation for

each domain:

x [abO x e

w c d 0 ÷+ I (III.4)

where s controls the contrast, o controls brightness, and the

remaining variables a, b, c, d, e and f determine how the

partitioned domain is mapped to the range. The least-mean-

squares value is used to determine if a mapping is acceptable.

n

R=Ej(s.a, + o.b,)2  (111.5)
I-1

But first, the range and domain values for the possible

mapping are used to calculate the contrast and brightness

variables.
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n n

[nN( ab) (E a )(E b)]
s= ,.1 1=1 1=1 (111.6)

n 1 n

[E b, -sE a,]
O= ,=I '1. (111.7)

n2

where n is the number of pixels in the domain or range (64 in

this case), and the ai's and bi's are respectively the domain

and range :ixel values. By substituting the results from

formulas (111.6) and (111.7) into formula (111.5), a least-

mean-squares value will be available for comparison. If this

value is less than the initial user input, then the mapping is

acceptable. If it does not meet the specification, the search

continues on to the next domain transformation, or in the case

that all eight, potential transformations have been attempted,

the next domain. If every domain has been searched without

meeting the least-mean-squares specification, the best

possible mapping of all domain transformations is selected.

After a mapping transformation is obtained for all

1,024 ranges, the information can be encoded. The encoding

requires 16 bits for the position of the 16x16 pixel domain,

seven for the brightness, five for the contrast, and three for

the flip/rotation needed to map the domain to a range. The
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bit requirements for the contrast and brightness were based on

the desired accuracy (NOSC TR1408, p. 13) . With these bit

requirements , the original image of 65,536 bytes (256x256xl)

can be compressed to 3,968 bytes (31/8xi024), which is a

compression ratio of 16.52:1. Figure 111.7 is a flowchart of

the Fractal compression procedure.

Decoding is implemented with the following formula:

p = p = W( /) = W&) = w, ) U P)U ... wN(P) (111.8)

where p is the original image, p' is the decompressed or

transformed image, and W is the combination of individual

affine transformations w (see formula 111.4) which converges

to the fixed point image p". In essence, arbitrary values are

input to the domain and iteratively processed through the

transform equation. As the process is repeated, the arbitrary

domain values progress towards their respective fixed points,

which together form the approximation p' of the original image

p.

The example provided is a rather simple analysis of

the fractal compression aigorithm. There are a number of

techniques, some implemente'd and some proposed, that can

greatly increase speed and especially, compression (Fisher,

1992, pp. 16-20), (Barnsley, 1993, pp. 119-171) . They include

varying the size and shape of the range and also classifying
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square specification less restrictive, speed and compression

can be increased, but the quality of the decompressed image is

reduced. Since arbitrary data is used for the initial

decompressed image, the final decompressed image is only as

good as the affine transformation chosen for recursive

iteration. The affine transformation, in turn, is then only

as good as the least-mean-square restriction selected by the

user.
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IV. COMPARISON OF METHODS

A. OVERVIEW

In terms of performance, the lossless and lossy compres-

sion techniques discussed in Chapters II and III are analyzed

for compression ratio, fidelity, and compression/decompression

time requirements. The compression ratio is the original

image memory size divided by the compressed data memory size.

The fidelity is a measure of the quality between the original

image and the reconstructed image. For the purposes of this

research, the root-mean-square error (rms) is used to evaluate

the error between the two images (Gonzalez, 1987, pp. 256-

257).

N-I N-I

1:EI _qx, Y) -fV(l Y
" "N x.o y.o

For NxN pixel images, f(x,y) consists of the individual pixel

values for the original image and g(x,y) consists of the

individual pixel values for the reconstructed image.

With the exception of Fractal compression/decompression,

the programs utilized in the comparison are taken from

Nelson's (1992) text. The Fractal compression/decompression

program, which is not in public domain, is provided for the

study and is in executable form only (Netrologic, Inc., 1993).
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The basic principles for these Fractal programs are outlined

in Fisher's notes (SIGRAPH, 1992). The public domain compres-

sion/decompression C language programs in Appendix B (Young,

1992) are built upon the same principles. It is noted that

the public domain version in Appendix B, which is not used in

the comparison, runs significantly slower.

B. PRESENTATION OF DATA

Three different images were selected to be processed by

each of the compression algorithms. These images can be seen

in Figure IV.l. Each image is 256x256 pixels with 256

possible shades of gray. The format used for input into the

compression programs is raw pixel grey map. In other words,

eight bits are needed per pixel so as to distinguish between

the possible grey-scales, which are represented in memory by

a symbol from the 256 ASCII character set. The data is read

proceeding from left to right and top to bottom.

When viewing the reconstructed images after compression

using lossy techniques, the rms value is somewhat subjective

with respect to the quality of the original. In this report,

arbitrary rms limits were assigned based on parameters set by

the Television Allocations Study Organization (Gonzalez, 1987,

pp. 257-258).

* Excellent - An image of extremely high quality, as good as
you could desire (0 s e., < 6).
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(a)

(b)

(c)

Figure IV,.I: Original images (a) LENA, (b)
AEIAL (C) SIGN.
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* Fine - An image of quality, providing enjoyable viewing.
Interference is not objectionable (6 s e' < 9).

* Passable - An image of acceptable quality. Interference is
not objectionable (9 s e,, < 12).

* Marginal - An image of poor quality; you wish you could
improve it. Interference is somewhat objectionable (12 s
e= < 14).

* Inferior - A very poor image, but you could watch it.
Objectionable interference is definitely present (14
s e= < 17).

* Unusable - An image so bad that you could not watch it
(17 s e,,).

In order to provide the reader with an idea as to how this can

affect image quality, Figure IV.2 shows LENA for an increasing

rms.

With the JPEG, rms is controlled by the input of a

variable called quality factor, which is an integer from 1 to

25. The quality factor is directly related to the quantiza-

tion matrix. The upper left-hand value becomes the quality

factor plus one, and every variable in the next diagonal is

increased by the quality factor. This increase continues

through each diagonal. See Figure III.4 for an example of the

quantization block for an input quality factor of two. A

rising quality factor causes a corresponding increase in rms,

consequently the decompressed image fidelity deteriorates.

The rms for Fractal compression is varied by a user input

called the error cut. The error cut is the same as the least-

mean-squares value defined in formula 111.5. An additional
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(a) (b) (C)

(d) (e) (f)

()(h)()

Figure IV.2: LENA for varying rms values (a) original, (b)
4.57 (c) 7.04 (d) 9.28 (e) 11.07 (f) 12.99 (g) 14.31 (h)
16.47 (i) 19.05.
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user input called optimization level is also required. This

value varies the possible domain shape, size, and location, in

addition to range/domain classifications; thus speed and

compression capability can be modified.

Figures IV.3 and IV.4 show graphically how rms changes

with varying quality factor inputs for JPEG an: error cut

inputs for Fractal compression. For high quality images (low

quality factor and error cut values), a change in the quality

factor or error cut has a much more noticeable effect on rms.

As image quality degrades though, changes in the two variables

have less of an impact on the resulting rms. One exception ic

the Fractal compression of SIGN. At a certain point, the

routine is unable to improve rms. Later graphs will also show

that the compression ratio reaches a limit as well.

Figure IV.5 is a comparison of rms versus compression

ratio using the JPEG algorithm. For the most part, there is

a linear relationship between the two properties. Looking at

Figure IV.6, at least for processing of LENA and AERIAL, this

is not the case with Fractal compression. There is a super-

linear relationship at the very least. At high quality recon-

struction, a small increase in coiriression can cause a large

drop in fidelity. On the other hand, at inferior qualities,

compression may be drastically increased for only a small loss

in fidelity. Again, SIGN is the exception because there is

a linear relationship between the two properties until a point
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where compression reaches a limit. Additionally, the rms

never gets better than unusable. In actuality, the image is

discernible, but there is a great deal of distortion or loss

of distinct boundary between the white letters and black back-

ground; thus its use for commercial applications in this

instance is questionable. This boundary ripple is also

evident with JPEG compression/decompression, even at low rms.

Figure IV.7 demonstrates when using JPEG compression at

high fidelity, significant savings can be achieved in compres-

sion/decompression time with small drops in image recon-

struction quality. The reverse is true at poor quality - the

compression/decompression time reaches a point where reducing

the fidelity does not result in any savings in time, thus the

only benefit is decreased data storage requirements.

A comparison of the compression/decompression time versus

the compression ratio for each method, applied to all three

sample images, can be seen in Figure IV.8. The results are

based on the best obtained rms in the case of the JPEG and

Fractal routines. It should be noted that since the Huffman,

Adaptive Huffman, and Arithmetic compression methods are

lossless, the rms of the decompressed image is zero in each

case. Due to vast differences in time for the Fractal

routines, compression/decompression time is represented by

taking its log base 10. For LENA and AERIAL, the Fractal

technique achieves greater compression, but at the expense of
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a large increase in time. In the case of SIGN, the arithmetic

and Fractal methods are comparable in compression, with

arithmetic coding being somewhat better. Arithmetic coding

though, is able to achieve the reduction in much less time.

Moreover, its decompressed image does not have the ripple at

the boundary between the black and white colors. One addi-

tional note refers to Chapter II.C, which states that black

and white (one bit per pixel) images could not be compressed

using Huffman coding. In the case of SIGN however, compres-

sion is in fact achieved. The reason is that in this case the

two colors are each represented by eight-bits, not one bit,

hence a reduction in the data-bit representation is possible.

The numerical data results for the figures are contained in

Appendix C.
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V. CONCLUSIONS

An analysis of the results from the previous chapter indi-

cates that for multi-color, real world images. the JPEG

compression algorithm is currently the best method for image

compression. Though the Fractal method is able to achieve a

much higher compression ratio for similar rms values, its

present execution time and computing power requirements

(Gershanoff, 1988, p. 47), (Barnsley, 1988, p. 222) severely

limit its practicality for present applications. In its

defense, the theory and principles behind Fractal image

compression are still relatively young. As new methods are

discovered to classify and partition the domain set and find

the affine transformations needed to map the domain to the

attractor (range), this technique will only improve. The

continual advancement in computer processing capability will

also assist. For these reasons, Fractal compression offers

the most potential for future applications, such as high

definition television (HDTV) and image recognition for

satellite imagery.

Another advantage of Fractal over JPEG compression is that

image size can be changed during decompression since any

scaling is multiplied proportionally through the affine

transformation at each iteration (Anson, 1991, p. 43). The
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JPEG is further limited in the image size it can process. The

8x8 block division criterion reduces possible dimensions to

those divisible by eight on each side. This 8x8 rule can be

modified, but then the model does not meet JPEG standards.

In the case of SIGN - a highly redundant, two color

image - the lossless method of Arithmetic coding is easily the

preferred technique. The JPEG and Fractal algorithms are not

very effective because even at high quality, there is a

noticeable ripple introduced at the boundary between the white

letters and black background. Huffman and Adaptive Huffman

coding are also better methods, considering the compres-

sion/decompression time, compression obtained, and decom-

pressed image resolution. Therefore, when compressing two-

color images (black and white), lossless algorithms are

certainly the favored procedure since the introduction of

errors can seriously flaw the decompressed image.

Future areas of research might introduce other proven

image compression techniques into the comparison. These

include higher order Arithmetic coding and the Ziv and Lempel

(LZ78) dictionary based schemes. The speed-up of the Fractal

compression routine by altering range/domain classifications

and domain partitioning, or modifying the methods used to find

the affine transformations, is another prospect. A third

concept is the optimization of image compression with a

combination of two or more of the possible algorithms. The
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JPEG method, which combines quantization with lossless entropy

compression, is an example of a two part compression process.

With the continuing demand for image data though, more

efficient methods of compression will need to be discnvered,

and the combining of more than one technique is a distinct

possibility.
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APPENDIX A - OPERATIONAL MECHANICS

A. CONCERNS

The inclusion of this appendix is to assist anyone who may

desire to continue research in the area of image compression.

The difficulties experienced in getting the compression

algorithms to run will be discussed. It is anticipated that

the reader, if deciding to explore this subject area further,

will obtain a fundamental understanding of the operational

mechanics and thus, avoid the steep learning curve usually

associated with new software.

B. SPECIFIC DIFFICULTIES

A detailed list of the specific hurdles encountered during

the research and how each one was approached.

1. Image Format

The first area of difficulty deals with image format.

There are a wealth of possibilities. The documentation

provided with the Graphics Transformer (IMSI, 1990) is a good

reference for explaining the differences between various

format types. For this work, as stated earlier, the format is

raw pixel grey-map (*.rpg, *.rpgm, or *.raw). In truth, this

is the closest thing possible to a "non-format". DaLa is

listed from left to right, row by row. Each ASCII character
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represents one of 256 shades of gra,,. While worki-ig with the

images though, one will likely becume familiar with many

additional format types. Raster (*.ras) is utilized for

working in a Sun System image processing tool called Sun-

vision. This format is structured with controlling data

placed throughout the image data. Each well-known word

processing package utilizes its own format - (*.wpg) for

WordPerfect, (*.pic) for Lotus 1-2-3, (*.pcx) for PC Paint-

brush, (*.dxf) for AutoCAD, etc. Many of the packages are

able to import files stored in another format, but its

reference should be checked if unsure.

2. Sun System to PC & PC to Sun System

If the image data is not in the required format for

processing, the Sun System provides a conversion tool called

imconv. It will convert approximately 30 different image

format types. It can be accessed by setting a path tc

/tools2/imagecv/bin/. To see the reference for its execution,

type imconv -fullhelp at the cursor. Also available for

format conversion, are numerous PC software packages. One

utilized by this author is Graphics Transformer (IMSI, 1990).

Imconv was faster though, and offered many more options than

its PC counterpart. The image files are transferred from

floppy disc to Sun account, and vice versa, with mtools.

Documentation can be obtained in Sp-301.

49



3. Display

There are several alternatives for image display. The

Sun System in the Electrical and Computer Engineering (ECE)

Department offers Sunvision. It can be found in the path

tools2/sunvisionl.i/bin/. Reference documentation is

maintained in the ECE image Processing Lab in Sp-546. This

software is somewhat outdated, thus there are obstacles to

getting it operational under the current Sun System Windows

Version 3 (OW3). It can be used only in Open Windows Version

2 (OW2). The best advice is to ask the account manager in

Sp-301 to provide two personal accounts, one that logs in

under OW2, and another which logs in under OW3. In this

fashion, Sunvision is accessible and the upgraded capabilities

of the newer windows is still available. While in account #1,

a file can be moved from account #1 to account #2 by using the

cp command. First transfer it to the /temp directory, change

its accessibility to read/write using the chmod command, and

after a remote log in to account #2, move the file from /temp

to account #2. Be aware that all Sun terminals are not

capable of running OW2. A second Sun option is to write a

display program. For a beginning C programmer, this would not

be overly difficult since the Sun graphics are fairly user

friendly.

Another graphics tool is the xv editor on the Silicon

Graphics machines in the Visualization Lab, In-148. Reference
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documentation can be acquired by typing man xv at the terminal

cursor. Besides display, both options offer scaling, rota-

tion, color altering, and more. This prcvides the flexibility

to change the image for varying research goals.

Display is more difficult on the PC because there are

a vast assortment of video card drivers, a component needed

for graphics display. Additionally, PC monitors are not as

capable as Sun monitors; thus a C language display program is

much more entailed than that needed for Sun monitor display.

One suggestion is to check if the supplier of the image

processing software has a display program available. For this

study, Netrologics (1993) provided a display program called

rawvi ew. exe.

4. Printing

An image printout can be obtained on the Sun by first

converting the file into postscript (*.ps) format and then

typing Ipr<printer#> <filename>. Another option is to import

the image into a word processing package. Of course, the file

will need to be in a format that is readable to the package

utilized. In terms of size and page layout, this author found

FrameMaker (available on the Sun) to be very flexible with

imported files. It requires them to be in Raster format.
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5. Access

a. Fractal Program

The Fractal compression/decompression programs in

Appendix B can be found under the public access address lyapu-

nov. ucsd.eedu. Transfer the files to a personal Sun account

using the f tp command. Type man f tp at the prompt for

instructions on the use of this command. After gaining access

to the public access network, type in anonymous when asked for

user name, and personal e-mail address when asked for pass-

word. The programs are listed in the directory /pub/young-

fractal as unifslO.tar.Z. This is a compressed archive file.

To get the individual files, become familiar with the tar and

compress commands (type man tar and man compress at the

prompt).

b. Nelson's Compression Routines

The computer programs listed in Nelson's book can

be purchased by calling the publisher (which recently changed

to Henry Holt Publishing) at 1-800-488-5233.

c. Compilers

The compiler for the Appendix B Fractal programs

can be obtained on the public access network at omni-

gate.clarkson.edu, which can be accessed in the same fashion

described earlier. The directory is pub/msdos/djgpp. The

required files are djdevlO9.zip, djgas138.zip, djgcc222.zip,

djlgrllO.zip, and readme.lst. The readme.lst and readme files
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provide all the instructions for installing the compiler onto

a PC. One thing not mentioned is that the libgr.a file in

dj1g9r109.zip needs to be added to the library directory once

the compiler is installed.

Nelson's programs can be compiled using Borland

C++ 2.0 for MS-DOS (1992, pp. 5-6, 78-79). Since version 2.0

is obsolete, version 3.0 was found to compile with one excep-

tion to the example command line on page 79. The -Ax option

no longer exists, the replacement is just -A. The programs

will not compile under the Borland MS-WINDOWS version. They

will also not compile using the cc compiler on the Sun System.

This requires such significant prosram modifications that they

must practically be rewritten.

d. Utilities

The account manager must set up a Sun account for

access to FrameMaker, Sunvision, etc. Be sure to specify the

utilities needed when signing up for an account.

PC utilities (Borland C++ compiler, PaintBrush,

WordPerfect, DrawPerfect, etc.) are installed on the computers

in Sp-431. Reference documentation, if not available, can

usually be obtained from the lab technician.

6. Compiling and Running

a. Fractal Routine on a PC

Upon installing the compiler as per paragraph 5.c

above, the program fracpack.c for instance, can be compiled
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using the command line gcc fracpack.c -igr -Im -o fracpack.

The order of the library options (-lgr and -Im) is important

because the linking is order-sensitive. The program wdy-

usual.c in appendix B must be in the same directory as

fracpack.c because it is called to classify the domains and

ranges. The compiled file must then be appended to the file

go32.exe (a program which provides graphics driver interface)

using a program called aout2exe.exe. Both files are contained

in the compressed unifslO.tar.Z file. Typing aout2exe

fracpack will create a file that is PC executable.

Since the programs fracpack.c and unifs.c display the

image during execution, the graphics driver used by go32.exe

must be set by the user. Directions are listed in the readme

and document (*.doc) files, which are also included in

unifslO.tar.Z. If the proper driver is not set, the computer

will lockup.

b. Fractal Routine on the Sun System

As they are listed in Appendix B, the Fractal

compression/decompression programs will not run on the Sun

System. The graphics are not compatible. The programs can be

modified by removing any code dealing with the display of the

file. The programs can then be made Sun executable by compil-

ing with the cc compiler (type man cc). In this case,

appending to the program go32.exe is not required since PC

monitor displa:: is not being used.
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c. Nelson's Programs on a PC

With the proper compiler, Nelsons's programs run

with no problems. The user should be informed that the

programs were written for images of 320x200 pixels (1992, pp.

374), therefore some modifications might be necessary in the

code in order to process images with different dimensions.
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APPENDIX B

This is the file "copying.wy".

Copyright Information for sources and executables that

are marked Copyright (C) WD Young
P.O. Box 632871
Nacogdoches TX 75963-2871

This document is Copyright (C) WD Young and may be

distribute verbatim, but changing it is not allowed.

Source code copyright WD Young is distributed under the

terms of the GNU Public License, with the following

exceptions:

*Donations are always appreciated.

A copy of the file "COPYING" is included with this

document. If you did not receive a copy of "COPYING",

you may obtain one from whence this document was ob-

tained, or by writing:

Free Software Foundation
675 Mass Ave
Cambridge, MA 02139
USA
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FRACPACK - a program for
FRACTAL IMAGE COMPRESSION

image.krd ==> image.ifs
version 1.0

#include <stdio.h>
#include <stdlib.h>
#include <graphics.h>
#include <math.h>
#include <time.h>
#define xsize 256
#define ysize 256
#define number flips 8
#define levels 2
#define maxpatch 8
#define min patch 4
#define max scale 1.2
long int usual (unsigned char Image(81 [81, int size);
int mapping;
int main(int argc, char **argv)
{ /* begin main block */

FILE *in, *out, *cf;
char *inf, *outf, rmsstr[13];
unsigned char Image[ysize] [xsize], blur[ysize-l] [xsize-11, plotdx, plotdy;
unsigned char Range[number_flips] (maxpatch] (max patch], Domain(max-patch] [m
unsigned char DX[xsize*ysizel, DY[xsize*ysize];
int reverse;
long int DomainClass(levels) [ysize - min-patch + 1] [xsize - min-patch + 1][
long int Range_Class(levels] [max patch] (maxpatch] [21;
int i, rx, ry, dx, dy, x, y, besti, bestdx, bestdy, patchsize;
long int classl, class2, class3, class4, count;
int inlevel;
int 1[81 [8] = 1{0,3,2,1,4,5,6,7},{1,0,3,2,7,4,5,6} {2,1,0,3,6,7,4,5j (3,2,1,

{4,7,6,5, 0,l,2,3}, {5,4, 7,6,3,0, l,2}, (6,5,4,7,2,3,0,1l}, 7, 6,5,4
short int offset, best offset;
lung int sumr, sumd, sumrd, sumr_sq, sumd_sq;
long int Domain sums[21 (xsize - min-patch + 1] [ysize - minpatch + 1];
float fsumr, fsumd, fsumrd, fsumr_sq, fsumd_sq, fmagica;
float bestscale, scale, root mean sq, best root meansq;
float mean sq, rootmean_sq_tolerance, mean sqtolerance, bestmean_sq, fpat
float temp, variance;
time t start time, finishtime;
long timeused;

struct header-t { /* "should" be a 12 byte header... we'll see */
long time; /* 4 bytes for compression time in seconds */
short rms; /* 2 bytes for 100.*rms value */
short addl; /* 2 bytes to be added later... room for growth */
long add2; /* 4 bytes to be added later... room for growth */
} header(l];

struct ifs t {
unsigned char dx;
unsigned char dy;
signed char scale;
short int offset : 12;
unsigned short int flip : 3;
unsigned short int size : 1;
} ifs[1],



ifs-table IleveJ.s] [xsize/min~patch] [ysize/min~patch];

if (argc < 4){
printf("lusage: fracpack rms infile.ext outfile.ext \n\n");
printf(11FRACPACK Version 1.0, Copyright (C) 1992, WD Young\n");
printf("FRACPACK comes with ABSOLUTELY NO WARRANTY\n");
printf("Please see files 'copying.wy' and 'copying' for details\n");
printf("If these files are missing,\n");
printf("write: WD Young, P.O. Box 632871, Nacogdoches TX 75963-2871\n");
return 1;

root mean -sq~tolerance =atof(argv[1I);
headerliOl .rms =(short) (l00.*root_ mean sq~tolerance);

inf = argv [2.I1 out f = arg-v[ 31 ;
if ((in = fopen~inf, "lrb")) == NULL){

fprintf(stderr, "Cannot open input file.\n");
return 1;

if ((out = fopen(outf, "1wb"1)) == NULL){
forintf(stderr, "Cannot open output file.\n");
return 1;

start -time =time(start-time);

mean-ss~tolerance = root-mean~sq~tolerance*root-mean~sq~tolerance;

GrSetMode(GR -default graphics);
for (x = 0; x < 64; x++)

GrSetColor(x,4*x,4*x,4*x);
for (x = 64;x < 256; x++)

GrSetColor(x,x,0,0);

/* Get .KRD biLunap 8-bit-grey-scale pixels, put in Image array. *
for (y = 0; y < ysize; y++)
for (x = 0; x < xsize; x++){

Image [y][x] = fgetc(in);
GrPlot (x, y, Image Fly] [xl >>2)
GrPlot (x+300,y, Image Fy] [x]>>2);
I

for (y = 0; y < ysize - 1;y++)
for (x = 0; x < xsize - 1;x++)

blur Fly][xl =(Image Fy Ix Ix
"+ Image[y I [x+1]
"+ Image Ey+l] [x I
"+ Image~ly+1] [x+l])>>2;

fclose (in);
sprintf(rmsstr, "%4.lf",sqrt( (double)mean sq~tolerance));
GrTextXY(20,290, "Irms tolerance", 255, 0);
GrTextXY(130,290,rmrsstr,255,0);

1* ~Classify Range's *



inlevel = 0;
for (ry = 0; ry < ysize; ry+=8){

GrLine(O, ry, 255, ry, 384);
for (rx = 0; rx < xsize; rx+=8)

for (y = 0; y < 8; y++.)
for (x = 0; x < 8; x++)

Range[OyI [yxl = Image ry +y I rx +x ]
classi = usual(Range[O], 8);
RangeClass [inlevel) [ry>>3] [rx>31 [0] = classi;
RangeClass~inlevel] [ry>>31[rx>>3] 11 = mapping;

GrLine(0, ry, 255, ry, 384);

*Compute Domain-sums array*

inlevel = 1;
patchsize = min~patch;
for (dy = 0; dy < ysize - 2*patchsize+1; dy++){

GrLine(300, dy, 555, dy, 384);
for (dx = 0; dx <c xsize - 2*patchsize+1; dx++){

Domain -sums [0] dy] [dx] = Domain -sums [11[dy] [dx] 0;
for (y = 0; y < 2*patchsize; y+=2)
for (x = 0; x < 2*patchsize; x+=2){

Domain [y,>l [x>>1] = blur (dy+yl (dx+x];
Domain -sums [01[dy] [dx] += Domain [y>1] [x>>l]
Domain-sums [1] dy] [dx] += Domain [y>>1][x>l] *Domain (y>>l] [x>>1I

variance = (Domain sums[l] [dy] [dx]- Domain-sums[0] [dyl [dx] *Domain su
if (variance > 16){(

classi = usual (Domain, 4);
Domain_-Class [inlevel] [dy] [dx] [0] [0] = classi;
DomainClass [inlevel] [dy) [dx] [0][1] = mapping;

for (y = 0; y < 2*patchsize; y+=2)
for (x =0; x < 2*patchsize; x+=2)

Domain [y>l] [x>>l] = 255 - blur~dy+y] [dx+x];
classi = usual (Domain, 4);
Domain -Class [inlevel] [dy] [dx][J1 [01 = classi;
DomainClass [inlevel] [dy] (dxl [11 [1 = mapping;
I

else Domain_-Class [inlevel] [dy] [dx] [01 [0]
Doma~inClass[inlevel] [dyl [dx] [1] [0] =-1;

Gr-.ine300, dy, 555, dy, 384);

Classify Range's *

for (ry = 0; ry < ysize; ry+=4){
GrLine(0, ry, 255, ry, 384);



for (rx = 0; rx < xsize; rx+=4)

fo{ y=0 ;y+
for (y 0; x < 4; x++)

Range[0] [yl [xl = Image [ ry +y I[rx +x 1;

classi = usual(Range[0I, 4);
Range_Class [inlevel] [ry>>2] [rx»>2][01 = classi;
Range_Class [inlevel] [ry>>2] [rx>2] [11 mapping;

GrLine(0, ry, 255, ry, 384);

*Compute Domain-sums array

patchsize = max~patch;
inlevel = 0;
for (dy = 0; dy < ysize - 2*patchsize+1; dy++)

GrLine(300, dy, 555, dy, 384);
for (dx =0; dx < xsize - 2*patchsize+1; dx++) {

sumd =sumd -sq = 0;
for (y = 0; y < 2*patchsize; y+=2*min~patch)
for (x = 0; x < 2*patchsize; x+=2*min~patch){

sumd += Domain -sums [01[dy + y] [dx + x];
sumd sq += Domain-sums [1][dy + y] [dx + x];

variance =(sumd~sq -sumd*sumd/63.)/64.;

if (variance > 16){
for (y = 0; y < 2*patchsize; y+=2)
for (x = 0; x < 2*patchsize; x+=2)

Domain [y>lI [x>>l] = blur [dy+y] [dx+x];

classi = usualCDomain, 8);
Domain_-Class [inlevell [dy] [dx][01 [0] = classl;
DomainClass [inlevel] [dyl [dx] [0] [11 = mapping;

for (y = 0; y < 2*patchsize; y+=2)
for (x = 0; x < 2*patchsize; x+=2)

Domain [y>l] (x>>1] = 255 - blur~dy+yl [dx+x];

classi = usual(Domain, 8);
Domain_-Class [inlevel] [dyl [dx] [11 [01 = classi;
DomainClass [inlevel] [dyl [dx] [1] (11 = mapping;

else Domain_-Class [inlevel] [dyl [dxl [01[01
DomainClass [inlevel] [dy] [dx] [1][01 =-1;

GrLiLCIý.300, dy, 555, dy, 384);

*Range Loop*



inlevell = 0;
for (patchsize = max~patch; patchsize >= min-Patch; patchsize/=2, inleve1*~)
for (ry = 0; ry <ysize - patchsize + 1; ry+=patchsize)
for (rx = 0; rx <xsize - patchsize + 1; rx+=patchsize)

GrLine(rx, ry, rx, ry + patchsize, 384);
GrLine(rx, ry ,rx + patchsize, ry, 384);
GrLine(rx + patchsize, ry, rx + patchsize, ry + patchsize, 384);
GrLine(rx, ry + patchsize, rx + patchsize, ry + patchsize, 384);

sumr =sumr~sq =0;
for (y = 0; y <~ patchsize; y++)
for (x =0; x < patchsize; x++)

Range(O [1]y] [xl =Imnage [ry +y] [rx +xi;
Range[111 [y] [lx =Image [ry+patchsize -1 -xl [rx +l
Range[2] [y] [x] =Image [ry+patchsize -1 -yI [rx+patchsize -1 -x];
Range [3] yly [xli =Image Ciry +x] [rx+patchsize -1 -y];

Range [4][y] [xl =Image [ry+patchsize -1 -y] [rx +l
Range[51 [y] [x] =Image [ry+patchsize -1 -xl [rx+patchsize -1 -y];
Range[616)[y]lix) =Image Cry +y] [rx+patchsize -1 -x);
Range[7] [y] [x] =Image [ry +x) [rx +l
sumr+=Range0[0 y] [xl ; sumrnrsq+=Range[0] [y]lix] *Range [0][y]lix];
I

fsumr=sumr; fsumr~sq=sumr~sq;

Domain Loop*

if ((patchsize < max~patch)&&c
(ifs -table~inlevel-i]liry/(2*patchsize)] [rx/(2*patchsize)] .offset !

best -mean_sq = 10000000000.;
count = 0;
for (dy = 0; dy < ysize - 2*patchsize+1; dy++){
for (dx = 0; dx < xsize - 2*patchsize+l; dx+-+)

if ((reverse = (Domain -Class~inlevel] [dyl [dx] [0] [0] == Range_Classlii
(DomainClass [inlevel] [dyl [dxl] [1 [0 == Range-Class [inlevel] [ry/
(dy == ry))

Grelot(dx+300+(patchsize»l) ,dy+(patchsize>>l) ,384);
DX[countl =dx; DY[count) = dy;
count ++;
reverse =1-reverse;

for (y = 0; y < (2*patchsize) ; y+=2)
for (x =0; x < (2*patchsize); x+=2)

Domain [y>>1][x>>l] = blur(dy+y I [dx+x

sumd = sumd_sq = 0;
for (y =0; y < 2*patchsize; y+=2*min~patch)
for (x =0; x < 2*patchsize; x+=2*min-patch){

sumd += Domain -sums [0)[dy + y] [dx + x];
sund~sq += Domain-sums[1] [dy + y] [dx + x];
I

f sumdsux"nd; f sumd-sq=sumd~sq;



fpatchsize-sq = (float) (patchsize*patchsize);
fmagica = (float) (sund~sq - sumd*sumd/fpatchsize-sq);
for (i =0; i < number Iflips; i++) {

i =I[Range-Class~inlevel] [ry/patchsize] [rx/patchsize] [1]][Doona'
sumrd =0;

for (y =0; y < patchsize; y++)
for (x =0; x <patchsize; x+i+)

sumrd += Domainhjy] [x]*Range[i] [yj [x];
fsumrd = sumrd;
if (finagica != 0.)

scale =(fsumrd - fsumd*fsumr/fpatchsize-sq)/fmagica;
else scale =0;

if (scale*scale < max scale*max scale){
scale = (signed char) 127. *scale /max-scaile;
scale = max scale * scale /127.;
offset =(short int) (fsumr -scale*fsumd)/fpatchsize -sq;
mean sq =(fsumr_sq + scale*(scale*fsumd~sq - 2*fsumrd + 2*0

+ offset*(offset*fpatchsize~sq - 2.*fsumr)) /fpatchsize

if (mean sq < best -mean_sq) I
besti = i; best mean sq = mean sq; bestdx = cx; bestdy
best scale = scale; best-offset = offset;

if (mean sq < mean -sq~tolerance){
goto gotbest;

} * end of conditional *

} * end of Domain loop *

;otbest:
for (i = 0; i < count; i++)

GrPlot(DX~i] +300+(patchsize>>l) ,DY[i] +(patchsize>>l) ,384);

sprintf(rmsstr, "%-8.4f",sqrt( (double)best-mean sq));
GrTextXY(560,20,rmsstr,255,0);
ifs(0].dx = bestdx;
ifs[0] .dy = bestdy;
ifs[01 .flip =besti;

ifs[0] .scale =127. * best scale / max scale;
ifs [01.offset =(patchsize == min~patchl Imean sq < mean -sqjtolerance) ?
ifs-table(inlevel] [ry/patchsize] [rx/patchsize] = ifs[0I;

,leanup:
GrLine(rx, ry, rx, ry + patchsize, 384);
GrLine(rx, ry ,rx + patchsize, ry, 384);
GrLine(rx + patchsize, ry, rx + patchsize, ry + patchsize, 384);
GrLine(rx, ry + patchsize, rx + patchsize, ry + patchsize, 384);

if ((out = fopen(outf, 'lab")) == NULL)

fprintf (stderr, "Cannot open output file. \n"l);
return 1;

finish-time = time(finish time);



time -used = (long)difftime(finish time, start_time);
header [0].time = time_used;
fwrite(header, sizeot(struct header_t), 1, out);

for (ry = 0; ry < 32; rya-+)
for (rx =0; rx < 32; rx++){

if (ifs -table(O 111ryl CrxI .offIset. == -500)
for (y = 2*ry; y < 2*ry + 2; y++)
for (x = 2*rx; x < 2*rx +2; x++){

ifs[0I = ifs table~l[]fy] [x]
if s [01size 1.;

else fwrite(ifs, sizeof(str'ict ifs t), 1, out);

if s [03 = ifs-table [01 [ry] [rx]
ifs[0] .size =0;
fwrite(ifs, sizeof(struct ifs_t), 1, out);

fclose (out);
GrSetMode(GR -default-text);

*All done. Whew... *
return 0;

/* end main block *
include "wdyusual .c



1*

** Copyright (C) 1992 WD Young, P.O. Box 632871, Nacogdoches TX 75963-2871

** This file is distributed under the terms listed in the document
"** "copying.wy", available from WD Young at the address above.
** A copy of "copying.wy" should accompany this file; if not, a copy
** should be available from where this file was obtained. This file
** may not be distributed without a verbatim copy of "copying.wy".

** This file is distributed WITHOUT ANY WARRANTY; without even the implied
** warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

/* This program decodes .IFS files into .KRD files */

#include <stdio.h>
#include <stdlib.h>

#include <graphics.h>
#include <math.h>
#include <string.h>
#define range domain
#define max scale 1.2
int main(int argc, char **argv){

unsigned char domain [256] [256], original[256] [256];
FILE *in, *krd, *out;
char *inf, *krdf, psnrstr[13], rmsstr[13], timestr[13], packedstr[13], crstr
int xsize=256, ysize=256, xhi=l, xlo=O, yhi=l, ylo=O;
int x, y, dx, dy, rx, ry, tsx, tsy, qx, qy;
int ii[64] [64], ddxx[64] [64], ddyy[64] [64];
int transx[64] [64] , transy[64] [64];
float ss[64] [64], oo[64][64], z;
int level table[64] [64], patchsize[2] = {8, 4}, PS, PSI, number ifses;
int ix, iy, iddxx, iddyy, n, i, nflips=8, niterations, differences[256] [256];
float rms,s, o, psnr, tempscale, tempoffset;
mnt fi1[] = (1, 0, -1, 0, 1, 0, -1 , Cl, f12[] = 10, 1, 0, -1, 0, -1 , 0,1}
int f21[] ={0, -1, 0, 1, 0, -1, 0, 1}, f22[] ={I, 0, -1, 0, -1, 0, 1,0},

struct trans-out {
unsigned char dx;
unsigned char dy;
signed char scale;
short int offset : 12;
unsigned short int flip : 3;
unsigned short int size : 1;
} transout[l];

struct header-t { /* "should" be a 12 byte header... we'll see
long time; /* 4 bytes for compression time in seconds */
short rms; /* 2 bytes for 100.*rms value */
short addl; /* 2 bytes to be added later... room for growth */
long add2; /* 4 bytes to be added later... room for growth */
} header[i];

if ((argc < 3)11 (argc > 4)) {
printf("\nusage: unifs iterations infile.ifs infile.krd\n\n");
printf("UNIFS Version 1.0, Copyright (C) 1992, WD Young\n");
printf ("UNIFS comes with ABSOLUTELY NO WARRANTY\n");
printf("Please see files 'copying.wy' and 'copying' for details\n");



printf("If these files are missing,\n");
printfC"write: WD Young, P.O. Box 632871, Nacogdoches TX 75963-2871\n");
return 1;

niterations = atoi(argv[l]D;
inf = argvll2] ; krdf =argv(131

if ((in = fopen(inf, I"rb")) == NULL){
fprintt(stderr, "Cannot open input file.\n");
return 1;
I

if ((krd = topen~krdf, "lrb")) == NULL){
fprintf(stderr, "Cannot open output file.\n");
return 1;

GrSetMode(GR -default_graphics';
for (y = 0; y < 64; y++)

GrSetColor(y,4*y,4*y,4*y);
for Cy = 64; y < 256; y++-i)

GrSetColor(y,0,y/2,y);
for (ry =0; ry < 256; ry++)
for (rx =0; rx < 256; rx++)

original [ry] [rx] = fgetc (krd);
GrPlot(rx+300,ry,original[ryj [rxV>>2);
domain[ry]l[rxl 127;

fcl-,ose (krd)

fread(header, sizeof(struct header-t), 1, in);
number ifses = 0;
for Cry = 0; ry < 64; ry+=2)
for (rx = 0; rx < 64; rx+=2)

I
fread(transout, sizeof(struct trans-out), 1, in);
level = transout (01.size;
PSi = patchsize[Ilevell - 1;
if (level == 0) number ifses++;
else number ifses-i=4;
for (y = ry; y < ry+2; y++)
for (x = rx; x < rx+2; x+i+){

level_table~y] [x] level;
if (level == 1
&& (x != rx 11 y !=ry)) fread(transout, sizeof(struct trans-out), 1,

ddxx[y] [x] = dx = transout[0] .dx;
ddyyfyll[xl = dy = transout[llo.dy;
ii[y] [xl = i = transout [01.flip;
ss[yl [xl = max -scale*CC(float)transout[01 .scale)/l27.);
oo~y] [x] = transout [01.offset;
transx~y] [xl = 2*4*x + PSi - Cfll[u]*(dx+PSl) + f12[i]*(dy+PSl));
transy[yl xlx = 2*4*y + PS1 - (f2l[iJ*(d~x+PSl) + f22[u]*Cdy+PS1));

sprintf(rmsstr, "%k6i"l,number -ifses);
sprintf(timestr,"%5i"l,header[0) .time);
sprintf(packedstr,"%;4.lf", (((float)header[0] .rms)/100.));
sprintf(crstr,"%5.2f",65536./(((float)nuxnber ifseB)*4.75));



GrTextXY(0,280,"Nurnber of Transformations", 255, 0);
GrTextXY(200, 280,rmsstr, 255, 0);
GrTextXYCO,300, "38 bits/transformation gives "1,255,0);
GrTextXY(240,300,strcat(crstr,":l"),255,0);
GrTextXY(100,260,argv[2], 255, 0);
GrTextXY(400,260,argvll3], 255, 0);
GrTextXY(0, 360, "SECONDS ",255, 0);
GrTextXY(0, 380, "PACK RMS ",255, 0);
GrTextXY(75,360,timestr, 255, 0);
GrTextXY(80,380,packedstr, 255, 0);
GrTextXY(0,460,"Copyright (C) 1992 W.D. Young", 255, 0);
for (n =0; n <niterations; n++)

/*Run through all non-overlapping NxN "RII blocks in the image *
for (ry = 0; ry < 64; ry++)

GrLine(256, 4*ry, 256, 4*ry + 4, 340);
for Crx = 0; rx < 64; rx++)

level = level -table[ry] [rx];
if (level ==0

&& ((rx & 11 (ry & 1))) continue; /* already covered in 8X8 *
PS =patchsize~level];

s =ss [ry] [rx];
o oo0 [ry] [rxl;
1 ii [ryl [rx];
tsx = transx [ry] [rx];
tsy = transy [ry] [rx];
iddyy = ddyy [ry] [rx];
iddxx = ddxx [ry] [rx];

1* ~Average & Transform the 256 2x2 "pixels" *
/~ ~~ o y=0 ************* **************y******=2)******

for (x = 0; x < 2*PS; x+=2)

dy =iddyy + y
dx =iddxx + x
z =(float) ((domaintdy ] [dx I

"+ domain~dy I [dx+l]
"+ domain [dy+l] [dxI
"+ domain [dy+l] [dx+1] ) >> 2);

ix =(fll[i]*dx + f12[i]*dy + tsx) >> 1;
iy =(f21(i]*dx + f22 (j]*dy + tsy) >> 1;
z =s~z + o;

if (z > 255.) z = 255.; else if (z < C,.) z 0.;
range[iy] [ix] = (unsigned char)z;
GrPlot (ix, iy, ( (int) z) >>2)

rms =0;

for (qy = 0;qy < 256; qy++)
for (qx = 0;qx <c 256; qx++)

dif ferences [qy] [qxl =domnain [qy] [qx] - original [qyl [qx];
differences [qy] [qxl ~=differences [qy] [qx];
rms += differences [qy] [qx];



rins = rms/65536.;
rmns = sqrt ((doubl~e) rms);
sprintt(rmsstr,"Oi8.4t",rms);
GrTextXY(0,320, "RIVS" ,255,0);
GrTextXY (40, 320, rmsstr,2 55,0);
psnr = -2Q*logl0(rms/255.);
sprintfipsnrstr, "%8.4f",psnr);
GrTextXY (0, 340, "PSNR ",255,0);
GrTextXY (40, 340, psnrstr, 255,0);

getch()
GrSetMode(GR default text);

1* All done. Whew... *
return 0;



Usual Classification 1.0 *

long int usual (unsigned char image(81 (81 , mnt size)

char rmsstr[13].
mnt mag, max, min, class, classl, subclass, rx, ry, x, y, ij;

long int q212][2], sumof [4], horizontal, vertical;
unsigned char temp [size] [size];
struct max-t{

mnt rx;
mnt ry;
)four, three, two, one;

struct class-t
mnt c;
mnt m;

C[43221;

C[4321] .c = C[41231 .c =C[3412] .c = C113214] .c =
C[2341] .c = C[2143] .c -C[1432] .c = C[1234] .c = 1;

C[4312] .c = C[4213] .c -C[3421] .c = C[31241 .c =
C[13421 .c = C[12431 .c =C[2431] .c = C112134] .c = 2;

C[4132] .c = C[4231] .c -C[3241] .c = C[3142] .c =

C[2413].c = C[2314].c - C[1423].c = C[13241.c = 3;

C[4321] .m = 0; Ct41231 .m = 5; C[3412] .m = 4; C[3214] .m = 3;
C[2341] .m = 7; C[2143] .m = 2; C[14321 .m = 1; C[1234] .m = 6;

C[4312] .m = 0; C[4213] .m = 5; C[34211 .m = 4; C[3124] .m = 1;
C[1342] .m = 7; C[1243] .m = 2; C[2431] .m = 1; Clj2l34] .m = 5;

C[4132) .m = 5; C[4231) .m = 0; C[3241] .m = 5; C[3142) .m = 2;
C[2413] .m = 4; C[2314] .m = 3; C[1423] .m = 1; C(13241 .m = 6;

for (ry = 0; ry <~ size; ry +=size/2)
for (rx = 0; rx < size; rx +=size/2){

q[ry/(size/2)] [rx/(size/2)] = 0;
for (y = ry; y < ry + size/2; y++)
for (x =rx; x < rx + size/2; x++)

q[ry/(size/2)] [rx/(size/2)1+=image~y] [xl;

mag -1
for (ry = 0; ry < 2; ry++)
for (rx = 0; rx < 2; rx++)

if (qtry] [rx] > mag){
mag = q~ry] [rx];
four.rx = rx; four.ry =ry;

a[four.ry] [four.rx] = -2;
mag = -1;
for (ry = 0; ry < 2; ry++)
for (rx = 0; rx < 2; rx++)

if (q[ry] [rx] > mag){
mag = q[ry] [rx];



three.rx =rx; three.ry =ry;

q~three.ry] [three.rx] =-2;

mag =-1;
for (ry = 0; ry < 2; ry++)
for (rx = 0; rx <2; rx++)

if (qllry] [rx] > mag)
mag = q~ryil[rx];
two.rx = rx; two.ry ry;

q~two.ry] [two.rx] = -2;
mag = -1;
for (ry =0; ry < 2; ry++)
for (rx = 0; rx < 2; rx++)

if (q~ryl [rx] > mag){
Inag = qfryl [rx];
one.rx = rx; one.ry =ry;

q[four.rxl [four.ry] = 4;
qI~three.rxl [three.ryj = 3;
q [two. rxl [ two -ryl = 2;
q[one.rx] [one.ry] = 1;
classl = 1000*q[0] [0] + 100*q[lI [0] 1 0*ql][1] +1 q[0] [1];
class =Cliclassi] .c;
mapping = C[classll.m;

for (y = 0; y < size; y++)
for (x = 0; x < size; X-.+)

if (mapping ==0) tenptyly Ix! =image [+y] [X
else
if (mapping ==1) temnp[y] [x] =image [size -1 -x] [y
else
if (mapping ==2) temp[y] [xl =image [size -1 -yl [size -1 -x
else
if (mapping ==3) temnp[yl [xl =image [+x] [size -1 -y

else
if (mapping ==4) temp ty][xl =image [size -1 -y] [X
else
if (mapping ==5) temp ty)[xl =image [size -1 -x] [size -1 -y
else
if (mapping ==6) temply] [xl =imnage [ +y] [size -1 -x
else temp [y] [xl =image [ +xl [ +

if (mapping !=0)
for (y = 0; y < size; y++)
for (x = 0; x < size; x++)

image [yl [xl =temp [y][xl;

finish:
for (j = 0; j < 2; j++)
for (i = 0; i < 2; i++){

sumof [0] sumof [11 sumof [2] = sunof [3] = 0;
for (ry =j*size/2; ry < j*size/2 + size/4; ry ++)
for (rx =i*size/2; rx < i*size/2 + size/2; rx ++){

sumnof [01 += image [rx] [ryl;
sumof [2] += image [rxl [ry+size/41;



fo }r ~ie2 y<j~ie2+sz/;r +
for (ry = j*size/2; ry < j*size/2 + size/2; ry ++~)

sumof [11 += imagellrxl [ry];
sumof [31 += image~rx+size/41 [ryl;
I

horizontal = labs(suinof[O] - sumof [21);
vertical = labs(sumof~l] - sumof[3]);

q[il~] f = (horizontal >= vertical);

subclass = 10000*class + l000*q[0] [01 + 100*q[1] [0] 10*q[0] [1]

return subclass;



APPENDIX C

TABLE C.1: LENA LOSSLESS COMPRESSION RESULTS.
Method Compress Compress Decompres Total

M Ratio Time Time Time

Huffman 1.07 4.73 6.37 11.10

Adapt Huff 1.07 8.79 9.78 18.57

Arithmetic 1.07 10.66 18.96 29.62

TABLE C.2: AERIAL LOSSLESS COMPRESSION RESULTS.

Method Compress Compress Decompress Total
I Ratio Time Time Time

Huffman 1.13 5.00 6.48 11.48

Adapt Huff 1.13 8.35 8.74 17.09

Arithmetic 1.13 10.38 18.52 28.90

TABLE C.3: SIGN LOSSLESS COMPRESSION RESULTS.

Method Compress Compress Decompress Total
Ratio Time Time Time

Huffman 7.37 1.48 4.56 6.04

Adapt Huff 7.38 2.09 5.38 7.47

Arithmetic 18.70 3.74 15.27 19.01
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TABLE C.4(a): JPEG COMPRESSION RESULTS FOR LENA.

QF Comp Comp Decomp Total RMS
Ratio Time Time Time

(sec) (sec) (sec)

1 3.57 3.63 3.74 7.37 3.41

2 5.07 3.41 3.46 6.87 5.05

3 6.14 3.35 3.41 6.76 6.17

4 7.03 3.35 3.52 6.87 7.06

5 7.76 3.30 3.41 6.71 7.80

6 8.40 3.30 3.57 6.87 8.45

7 8.94 3.30 3.57 6.82 8.96

8 9.39 3.24 3.35 6.59 9.40

9 9.84 3.24 3.52 6.76 9.82

10 10.21 3.41 3.19 6.60 10.22

11 10.55 3.41 3.13 6.54 10.57

12 10.89 3.41 3.24 6.65 10.91

13 11.20 3.41 3.13 6.54 11.20

14 11.48 3.41 3.13 6.54 11.42

15 11.73 3.41 3.13 6.54 11.67

16 11.98 3.41 3.30 6.71 11.92

17 12.21 3.41 3.13 6.54 12.15

18 12.47 3.35 3.35 6.70 12.38

19 12.69 3.41 3.13 6.54 12.64

20 12.90 3.41 3.24 6.65 12.88

21 13.12 3.41 3.35 6.76 13.07

22 13.26 3.41 3.30 6.71 13.24

23 13.39 3.41 3.13 6.54 13.39

24 13.58 3.41 3.30 6.71 13.65

25 13.72 3.41 3.30 6.71 13.79
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TABLE C.4(b): JPEG COMPRESSION RESULTS FOR AERIAL.

QF Comp Comp Decomp Total RMS
Ratio Time Time Time

(sec) (sec) (sec)

1 1.77 3.90 3.90 7.80 4.66

2 2.45 3.79 3.74 7.53 8.20

3 2 13 3.63 3.52 7.15 10.91

4 3.80 3.63 3.46 7.09 13.06

5 4.45 3.63 3.57 7.20 14.78

6 5.12 3.52 3.52 7.04 16.27

7 5.72 3.46 3.46 6.92 17.48 1

8 6.25 3.52 3.35 6.87 18.46

9 6.78 3.52 3.35 6.87 19.31

10 7.28 3.24 3.13 6.37 20.05

11 7.74 3.35 3.19 6.54 20.24

12 8.20 3.24 3.13 6.37 21.35

13 8.63 3.24 3.13 6.37 21.86

14 8.99 3.24 3.30 6.54 22.29

15 9.35 3.24 3.19 6.43 22.73

16 9.64 3.19 3.30 6.49 23.08

17 9.96 3.24 3.30 6.54 23.43

18 10.24 3.30 3.13 6.43 23.71

19 10.51 3.24 3.13 6.37 24.00

20 10.75 3.24 3.13 6.37 24.19

21 11.00 3.24 3.13 6.37 24.46

22 11.26 3.19 3.13 6.32 24.71

23 11.49 3.19 3.30 6.49 24.94

24 11.72 3.24 3.19 6.43 25.16

25 11.90 3.19 3.35 6.54 25.36
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TABLE C.4(c): JPEG COMPRESSION RESULTS FOR SIGN.

QF Comp Comp Decomp Total RMS
Ratio Time Time Time

(sec) (sec) (sec)

1 4.16 3.68 3.63 7.31 2.27

2 4.87 3.57 3.46 7.03 4.12

3 5.47 3.46 3.57 7.03 5.75

4 5.91 3.52 3.52 7.04 7.17

5 6.34 3.46 3.46 6.92 8.47

6 6.79 3.52 3.57 7.09 9.66

7 7.19 3.46 3.52 6.98 10.88

8 7.52 3.46 3.52 6.98 11.91

9 7.79 3.46 3.35 6.81 12.81

10 8.08 3.24 3.30 6.54 13.63

11 8.28 3.30 3.19 6.49 14.14

12 8.57 3.24 3.13 6.37 15.28

13 8.93 3.30 3.19 6.49 16.12

14 9.17 3.19 3.24 6.43 16.70

15 9.31 3.30 3.35 6.65 17.19

16 9.58 3.24 3.35 6.59 17.78

17 9.65 3.24 3.13 6.37 18.57

18 9.88 3.19 3.19 6.38 19.49

19 10.05 3.19 3.41 6.60 19.93

20 10.17 3.30 3.35 6.65 20.29

21 10.31 3.24 3.19 6.43 20.70

22 10.40 3.24 3.13 6.37 21.07

23 10.51 3.19 3.19 6.38 21.28

24 10.67 3.19 3.19 6.38 22.04

25 10.81 3.24 3.24 6.48 22.44
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TABLE C.5(a): FRACTAL COMPRESSION RESULTS FOR LENA.

Error Optim Comp Comp Decomp Total RMS
Cut Level Ratio Time Time Time

E (sei) (seC) (sec)

1 5 5.11 645 5.22 650 4.57

2 5 8.42 341 3.79 345 5.75

3 5 11.68 217 3.46 220 7.04

5 5 19.42 106 3.24 109 9.28

7 5 27.97 64 3.40 67 11.07

10 5 41.74 38 3.24 41 12.99

13 5 53.85 28 3.13 31 14.31

18 5 78.11 18 3.08 21 16.47

25 5 113.98 12 3.08 15 19.05

TABLE C.5(b): FRACTAL COMPRESSION RESULTS FOR AERIAL.

Error Optim Comp Comp Decomp Total RMS
Cut Level Ratio Time Time Time

(sec) (sec) (sec)

2 5 3.67 960 4.78 965 9.71

3 5 4.60 691 4.51 696 11.35

5 5 6.95 371 4.12 375 15.43

7 5 10.17 206 4.34 210 19.02

10 5 16.09 105 4.00 109 22.62

13 5 23.22 65 3.51 69 24.74

18 5 39.17 34 3.63 38 27.20

25 5 65.54 19 3.57 23 29.07
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TABLE C.5(c): FRACTAL COMPRESSION RESULTS FOR SIGN.
Error Optim Comp Comp Decomp Total RMS

Cut Level Ratio Time Time Time
(sec) (sec) (sec)

1 5 17.51 253 3.24 256 13.07

2 5 17.51 253 3.24 256 13.07

3 5 17.51 253 3.19 256 13.07

5 5 17.84 248 3.19 251 13.29

7 5 18.96 222 3.24 225 13.71

10 5 22.74 157 3.19 160 16.18

13 5 26.60 109 3.13 112 17.82

18 5 33.87 67 3.35 70 22.45

25 5 42.47 44 3.35 47 27.92
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